Modèles de classement specialisés pour la résolution automatique de la coréference

old_uid5487
titleModèles de classement specialisés pour la résolution automatique de la coréference
start_date2008/10/27
schedule14h-16h
onlineno
summaryWe investigate two strategies for improving coreference resolution: (1) training separate models that specialize in particular types of mentions (e.g., pronouns versus proper nouns) and (2) using a ranking loss function rather than a classification function. In addition to being conceptually simple, these modifications of the standard single-model, classification-based approach also deliver significant performance improvements. Specifically, we show that on the ACE corpus both strategies produce f-score gains of more than 3% across the three coreference evaluation metrics (MUC, B3, and CEAF).
responsiblesInformation non disponible, Crabbé