Spike-based computing and learning in brain, machines, and visual systems in particular

old_uid12155
titleSpike-based computing and learning in brain, machines, and visual systems in particular
start_date2013/03/01
schedule14h
onlineno
detailsInvited by A. Arleo.
summaryUsing simulations, we have first shown that, thanks to the physiological learning mechanism referred to as Spike Timing-Dependent Plasticity (STDP), neurons can detect and learn repeating spike patterns, in an unsupervised manner, even when those patterns are embedded in noise[1,2]. Importantly, the spike patterns do not need to repeat exactly: it also works when only a firing probability pattern repeats, providing this profile has narrow (10-20ms) temporal peaks[3]. Brain oscillations may help in getting the required temporal precision[4], in particular when dealing with slowly changing stimuli. All together, these studies show that some envisaged problems associated to spike timing codes, in particular noise-resistance, the need for a reference time, or the decoding issue, might not be as severe as once thought. These generic STDP-based mechanisms are probably at work in particular the visual system, where they can explain how selectivity to visual primitives emerges[5,6], leading to very reactive systems. I am now investigating if they are also at work in the somatosensory system. Finally, these mechanisms are also appealing for neuromorphic engineering: they can be efficiently implemented in hardware, leading to fast systems with self-learning abilities[7].
responsiblesWehrle